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1. INTRODUCTION

The recent interest in the near-millimeter-wave region of the electromag-
netic spectrum has created a need for attenuators, phase shifters, isolators,
and other devices at these frequencies. Attempts to scale standard ferrite
devices from the X band (9 GHz) to this frequency range are frustrated by the
requirement of high static magnetic fields. At X band the magnetic field
required for ferromagnetic resonance is approximately 3,000 gauss (G*)! while
at 90 GHz the field required for ferromagnetic resonance is approximately
30,000 G, Such high fields are difficult to generate for use in practical,
portable devices. One method of overcoming this obstacle is to use ferrites
with large internal fields. Then the resonance can be achieved by applying a
modest external field.?2 However, such ferrite materials generally have a
relatively large intrinsic loss and this leads to devices that have a large
and undesirable insertion loss. We wish to develop a new technique of using
conventional, low-loss ferrite material in an unconventional manner to produce
the necessary devices at near-millimeter wavelengths.

In this report we investigate the possibility of building a low applied
magnetic field isolator or nonreciprocal phase shifter at 90 GHz or at higher
frequencies using standard, low-loss ferrites. The system studied is shown in
figure 1. It consists of a thin ferrite slab backed by a metal plate. The
static applied magnetic field is in the plane of the ferrite slab. Solutions
to Maxwell's equations, including the equation of motion of magnetization, are
given. These equations are applied to the particular geometry, and it is
shown that under appropriate conditions only the dominant surface wave mode
propagates. The dominant surface wave is the transverse electric (TE) surface
mode with the electric vector parallel to the static magnetic €£field.
Conditions on the slab thickness are found such that only the dominant TE mode
propagates. As the static magnetic field is increased from zero, the phase of
the forward wave (waves propagating along the positive y-axis), differs from
the phase of the backward wave (waves propagating along the negative y-axis),
and this can be used as a nonreciprocal phase shifter. If the static magnetic
field is increased and an appropriate slab thickness is chosen, one of the
waves, either the forward or reverse wave, is cut off, and this can be used as
an isolator. Furthermore, conditions on the slab thickness and static mag-
netic field can be found such that neither forward nor reverse waves
propagate. The field strength can then be changed, and one of the waves will
propagate. Thus, by changing the applied magnetic field suddenly, we have a
switching device.

lg, Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw
Hill, New York (1962). [This book contains a large number of practical
applications of ferrites to microwave devices. Much of the pioneer work on
yttrium iron garnet single crystals and applications of ferrites to microwave
devices was done at Harry Diamond Laboratories. Referemnce to this work is
contained in the selected bibliography section.]

2y, H. Von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,
New York (1965), p 451.

*(gauss) = (tesla) x 10”4
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0 In general, Maxwell's equations
(in cgs units) when the fields vary
harmonically as e Yt arel
VCXB X VXE = ikB ,
METAL —s{ FERRITE | FREE SPACE VxH = -ikD + 2L g
VeB =0 , (1) .
and -'-
METAL VeD = 41'|'p _J
() Z§ $Ho ! o
*®  with
METAL —={ FERRITE | FREE SPACE
k = («D/C .
).
y > :
(J Xx=a r For our purposes, we shall assume that : .q
METAL J and p are zero; thus, the electric S

field, E, and the electric displace-
Figure 1. Coordinate system for two ment, D, are related by
geometries applicable to present

analysis. D=¢ck . (2)
With these assumptions and equation (2), we have

VeE = 0

and (3)
VxH = -~ikeR .
The configurations we have chosen are shown in figqure 1. The analysis is

equally applicable to the configuration of figure la or figure 1b. We assume
that none of the fields vary in the 2z direction, and we assume a TE mode in

the structure (E. = E. = 0, l-:‘z # 0). With these assumptions, the first of
equations (1) can be written as
) = i D
'ry- Ez = :Lka {
and (4) . '71
- @
-2 5 -iks . <9
9x 'z y .

35. p. Jackson, Classical Electrodynamics, second edition, Wiley, New York o
(1975), p 217. ::%
k




In appendix A we obtain the B, H relationship

By

uHx + lKHy '

and (A-13)

By = tu - lKHx '

When these relations are used in equation (4) we get

ik(uHx + iKHy)

and (5)

.2102
Nm
L}

= ik (pH, - ikH ) .

|
%
Ntﬂ
[

Yy

The results given in equation (5) can be used to determine the magnetic fields
as

He = (0 35 B + ix 30 B )/[ik (2 - «2)]

and (6)

H, = -(u %; E, - ik %y-Ez)/[ik(uz - Kz)] .

Equation (6) determines the magnetic field components once the electric field,
Ez, is known. To determine Ez, we must obtain the wave equation satisfied by
this field component.

To obtain the wave equation for Ez we take the curl of the first of
equations (1),

VxXVYxE = ikVxB
and in Cartesian coordinates
V(V.E) - V2E = ik (VxB) .

From equation (3) and since E has only a z component, We obtain

(9 9
-V2E, = ik(%7 B, - 57 B,) (7)

where

2 2
2 _ ] ]
' 352 + 3;7 .

The result on the right side of equation (7) can be reduced by using equation
(A-13) and V*B = 0 to obtain

E
V2E, + k2 = (2 - «2)E, = 0 . (8)

.-::;

N T
.,..,..

~@



E}: This 1is the wave equation satisfied by Bz for the region occupied by the
" ferrite slab. To obtain the corresponding wave equation for the exterior
l" region {(x > a), let Kk = 0 and € = g = 1 in equation (8); thus - ‘.}
- 2u 2 - ]
o v E, + k“E, o, X >a . (9) L

If we assume that we have a wave propagating along the y-axis so that all the
fields vary as e*?Y, then equations (8), (9), and (6) can be written as

42 , €
—é‘E*'[kZE(UZ"KZ)—qZ]E:O’ 0<x<a ,

dx .
42 9 S
—E+ (k¢ -gq2)E_ =0 , x >a , :
dx2 pA ___j
( of
- ) dE )
[ H = (qub + K E;)/[k(uz - KZ)] ' 0<x<a , i
H = % E , x>a , (10)
3 .-
od - dE’ 3 2 E
- Hy = —(u ax * qKE)/[lk(uz - K )] ’ 0<x<a , ]
o and '
' 1 4
‘ Hy ~ ik dx X >a ! —-_.!
o where
.:_'
o - paldy
- Ez = Ee
: The nonreciprocal term appears in H_, in the product gk. If the magnetic
field is reversed, K(—Ho) = —K(Ho) (Ssee eq (A-14) and (A-11), app A), then H
returns to the same form if we reverse the direction of propagation. That is,
5 ax(H,) = (=a)x(-H ) (11)
However, the results given in equations (11) and (10) are not sufficient to
pe assure nonreciprocity. To achieve a truly nonreciprocal device it is neces-
ot sary to have some asymmetry in the x direction. For the case considered here,
L} the asymmetry is supplied by the conductor at x = 0. Asymmetry could also be
i{ supplied by replacing the conductor by a dielectric slab. The solution for a

.- dielectric slab is considerably more complicated than for the conducting plate
p considered here, but the problem using a dielectric slab may be more useful
for a practical device.

S
B
o)
,’
k
-

N
L

We wish to have surface waves propagating along the ferrite slab, so we
e assume solutions for equation (10) of the form

i
toL ‘
@
ey Ny a9

a'
P




E = A sin (Fix) ' U<x <a ,
and (12)
E = Be—Pox ' X >a ,
where
2 = 2 2 -}
l% = kze(u - K )/u q
and
2 - 42 . w2
Fo =q k .
The corresponding magnetic fields are obtained using equation (10). The
boundary condition at x = 0 is that Ez = 0, and the solution chosen, in
equation (12), assures that this boundary condition is satisfied. The bound-
ary conditions at the surface of the slab (x = a) are that Ez a H are

continuous. Using equations (12) and (10), and applying these bou. 1ry con-
ditions, we obtain

- = [qK + uri cot (Pia)]/(uz - Kz) . (13)

This is the transcendental equation determining the propagation cons = 1, Af
the relationships of ¢ with Fo and I‘.1 given in equation (12) are usea.

In our discussion of equation (11) we pointed out that the nonreciprocity
arises due to the product gk. This is also true in eguation (13). If we
express Fo and T. in terms of g, using equation (12), the only unknown in
equation (13) is q. All the quantities in equation (13) are even functions of
the magnetic field (u, Fi, and Fo), except that k is an odd function of mag-
netic field (K(-Ho) = -K(Ho)). Thus, if we find the solution of equation (13)
for Hy positive (q+) and the solution of Hy negative (g_) assuming g positive
in both cases, then Ag = q, - 4q_ would be the differential phase shift. The
same result could be obtained by assuming first q positive, then g negative,
but the magnetic field H_ > O in both cases. Because of the complicated
manner in which the maqgnetic field enters in equation (13), we would expect
this differential phase shift, Aq, to vary with the strength of the static
magnetic field, Ho. Thus, by varying the applied magnetic field, Ho, the
differential phase shift can be varied.

3., COMPUTATION

For the purposes of numerical evaluation it 1is convenient to introduce
several dimensionless variables

Po = kY

ry

1}
x
=<

lg, Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw
Hill, New York (1962). [Detailed descriptions of various nonreciprocal phase
shifters are given in the later chapters of this work.]

9
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(14)
and

q =ko .
Using these variables introduced by equation (14) in equation (13) we obtain

Yo = [ok + wy; cot (kay;)]/(n? - «?) , (15)
and equation (12) becomes

2 -9 2 g2

Y§ '

and (16)
Yf = e(uz - KZ)/U - .

The solutions of eguations (15) and (16) then give the dimensionless
quantities Yor Yi’ and ¢ for any particular ferrite. Because of the
complicated nature of these equations, it 1s extremely difficult to obtain a
solution, particularly when magnetic 1losses and dielectric losses are
considered. We shall restrict ourselves to the lossless case. Losses in a
dielectric slab (HO = 0 in eq (15)) are considered in appendix B.

The lossless case for the magnetic part is given by letting a = 0 in
equations (A-11) and (A-14). If we assume that the dielectric constant 1is
real (to consider losses in the dielectric, we assume € = €' + i€", with €" >

0), then the roots of equation (16) are all real. A useful result can be
obtained from equation (15) if we investigate the liwmit y, » 0% (that is,
PO > O+). This situation corresponds to the limit wher2 the surface wave on
the ferrite is minimally bound. If we let Yo = 0 in equation (15) we have

K,HY; cot (kaYi) =0 , (17)

and for Yo = 0 equation (16) yields

(18)
v, = [e(w? - k2)m -1]'7%

and since equation (17) is even in Y;, we need only consider solutions for
which Y, > 0. The solution of equation (17) for kaYi is given by

kay, = tan'1( p i) + pn (19)

where p =0, 1, 2, + « « (Actually p can take on negative values, but for our
purposes p > 0 is sufficient.) The wvalue of p in equation (19) 1is the
smallest integer that makes the right side positive (larger positive values of

10
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p give higher modes). Since y; is given by equation (18), equation (19) gives
the thickness, a, of the ferrite slab for a particular value of magnetic
field, Ho' Thus we have

1 ~1 uy;
oo o 28 n]
and if we let Hy » -Ho we have
1 -1 (HYy
a_ = E?I [%an (—?7) + p_n] ’ (21)
since K(—Ho) = -K(Ho).

For the lossless case (a = 0) using equations (A-14) and (A-11), we can
write the quantities entering equations (21) and (18) as

(H1 - B)(H1 + B)

u = -
. TH'] - sz(H“ + Hz] ! :
4wMH

Xx_ _ L R
H (H1 - H2HH1 + Hz) ..‘
and A
n= 1+ 4TMH , 3
HY - H1 <

where LR

H2 = yBH , o
-
H] = w/Yy . o

The analytical form corresponding to a Brillouin function“ for spin 1/2 parti-
cles

M(H) = Mo tanh (sH) , (22)

{ J
+ PRI
B . -,l‘- N B
FNPAT LA,

is assumed with s chosen by assuming M(H) to be 90 percent of the saturation
magnetization, Mo' at a field of 500 Oe.*

The slab thickness, a,, for magnetic fields in the positive z direction
given in equation (20) with the smallest value of p, gives the lowest mode
cutoft. That is, any slab thinner than a, will be cut off. The higher modes

A okl o p

“Cc. Kittel, Introduction to Solid State Physics, fourth edition, Wiley, New
York (1971), p 505.
*(0e) = (A/m) x 79.577

11
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are given by larger values of P, in equation (20). The slab thickness given
in equation (21) is for the magnetic field in the negative z direction. The
resulting thicknesses, a, and a_, &~ the lowest mode for yttrium iron garnet
(YIG) are shown in figure 2, The frequency chosen is 90 GHz and the
properties of YIG are from Von Aulock.? From figure 2 we see that at HO =
3000 Oe, for a slab thicker than 283 um, radiation propagates in both direc-
tions. With Ho = 3000 Oe and for a slab between 283 and 276 um, only waves
propagating in the positive y direction are allowed and we have an isolator.
For slabs less than 276 um and a field of 3000 Oe, no wave propagates. There-
fore, curves as given by figure 2 can be used to design isolators, switches,
and nonreciprocal phase shifters for ferrite materials, provided the material
has low dielectric and magnetic losses. Even in cases where these losses are
not negligible, data as presented in figure 2 are helpful for design purposes,
provided operating points are chosen as far as possible from the cutoff
points. Figure 3 shows the slab thicknesses a, and a_ for a nickel zinc
ferrite at 90 GHz. The slab thicknesses are reduced because of the larger
dielectric constant (¢ = 12,5 as compared to € = 10 for YIG). The differen-
tial thickness given by

Aa =a - a (23)

is increased because of the larger saturation magnetization (4mM_ = 1750 G for
YIG, 4nMo ~ 5000 G for nickel zinc ferrite). In both figures 2 and 3, the low
applied magnetic field values (Ho < 500 Oe in fig. 2 and Ho < 1000 Oe 1in
fig. 3) should not be given too much consideration.

286.0
o
2836
E A
3
<
g 281.2 4T My =175006
b €= 10000
& f = 90 GHz
= 2788
m
( -
7] a.
2740 " 1 L I 1 It 1 Il i
0.0 1600.0 3200.0 4800.0 64000 * 80000

Ho (0)

Figure 2., Slab thickness as a function of magnetic field for Y3Fe5012 (YIG)
with reported values at X-band frequencies.

2y, H. Von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,
New York (1965), p 451.
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p\,
b *.
NICKEL ZINE FERRITE
a._
€ 260
i
o
7] 4w M, = 5000 G
2 €=125
»x
2 {= 90 GHz
z
o
g
7]
250
a,
240 1 J 1 1 | ]
0 1000 2000 3000 4000 5000 6000 7000
Ho (08}

Figure 3. Slab thickness as a function of magnetic field for nickel-zinc _
ferrite. A ..q

To illustrate more clearly the effect of changing only one of the vari-
ables of a material, such as the dJdielectric constant or saturation magnet- )
ization, several hypothetical cases are considered using the values for YIG as
a starting point. In figure 4 the dielectric constant of the ferrite is
increased to 12 from the original value (10) used in figure 2. The results ,
show that thinner slabs are required for similar behavior, but that the dif- o -
ferential thickness, Aa, remains essentially unchanged from its original value
in figure 2. Increasing the dielectric constant to 14 has essentially the
same effect, as can be seen in figure 5. With the dielectric constant at 10 ]
but with the saturation magnetization increased from 1750 (in fig. 2) to 2000 <
G, the calculations are repeated and the results are shown in figure 6. “”

:
]
\
<
1
4

Comparing these results with those in figure 2, we see that there is only a
slight change in the differential thickness, Aa. Since the saturation magnet-
ization changes with t:emperatxue,2 the results shown in figure 6 indicate that
an isolator would not be very sensitive to changes in the ambient temperature.
Figures 7 and 8 have larger departures of the saturation magnetization from
the value of 1750 G used in figure 2. They show that the differential thick- ——
ness increases with saturation magnetization, but the slab thickness 1is ﬂ
essentially constant for changes in 4uM. Therefore, the results given in
figures 2 through 8 would indicate that, to a good approximation, we can
assume that increasing the dielectric constant decreases the required slab
thickness and increasing the saturation magnetization increases the differ-
ential thickness. These two effects are independent.

2y. H. von Aulock, Handbook of Microwave Ferrite Materials, Academic Press,
New York (1965), p 451.
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g €=12.000 Figure 4. Slab thickness as _ R
= 2520 = 90 GHz a function of magnetic field R
< a, for a hypothetical YIG sample -
i (dielectric constant assumed .ﬂ
2500 to be 12). 3
248.0 L 1 \ 1 s | : 1 1 - :
0.0 1600.0 3200.0 4800.0 6400.0 8000.0 R
Ho () i
»
238.0 ]
L . .
236.0 a- :1
Ts; e
Figure 5. Slab thickness as ¥ 2349 }_‘;;_.j‘
a function of magnetic field @ 4TMy = 17500 G S
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: g €=10.000 a function of magnetic field
- E orsal 1= 90 GHz for a hypothetical YIG sample
<
3

~N
~
wn
~

as (saturation magnetization
o K// assumed to be 2500 G).

2720 i 1 i | 1 § 1 1
. 0.0 1600.0 3200.0 4800.0 6400.0 8000.0
Hq(0e)
N 290.0
N 286.4
- z
b . a
j Figure 8. Slab thickness as o 2828
a function of magnetic field g ":‘3;03000‘05
; for a hypothetical YIG sample & ‘: '
3 (saturization magnetization = 2792 f= 90 GH:
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Next, the frequency sensitivity of the solutions to equations (20) and
(21) are investigated. For the purpose of this investigation YIG was chosen
with € = 10 and 4™, = 1750 G as in figure 2. Figure 9 shows the variation of
slab thickness, a,, and differential thickness, Aa, as a function of magnetic
field for three different frequencies (80, 90, and 100 GHz). In figure 10 the
thickness, a,, is plotted versus frequency from 80 to 100 GHz for a magnetic
. field Hy = 000 Oe. The slab thickness for both a, and a_ decreases with
. increasing frequency. Thus, if the dielectric constant Jdecreases with fre- .
. quency in the correct manner, the slab thickness would remain constant.
- Unfortunately, ferrites with dispersion in any region of interest have a fj;‘
2 prohibitive amount of loss in that region. R
‘ X
- B
4. CONCLUSION C ]
- We have found the conditions under which a surface wave propagates on a ' :"
- ferrite slab backed by a metal conductor. The only region investigated was ‘
; that with the static magnetic field much less than the magnetic field required ..
: ]
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for ferromagnetic resonance in the material. The results reported here are
for the dominant TE mode of the system. Magnetic and dielectric losses were
assumed to be negligible in this analysis. It is expected that these results
will be useful in the design of a practical device, provided they are used in
a region some distance from an abrupt cutoff. The abrupt cutoff points should
be softened by the introduction of losses in a manner similar to those used in
wavequides when the conductivity of the walls is included.

The results of the analysis are presented in the form of graphs that
border the three regions: both forward and reverse propagation but with
different phase velocities, only forward propagation, and no propagation. it
any given frequency these regions are outlined by slab thickness as a function
of applied magnetic field. The forward and reverse propagation in the first
region suggests its use as a phase shifter, and the second region can he used
for isolation. The third region can be used for switching if the applied
magnetic field is suddenly changed from this region to region two.
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3 Losses were considered only for the particular case where the applied
' magnetic field was zero and magnetic losses were ignored. Small dielectric
losses were introduced and the complex propagation constant, q = q' + iq",
along the surface was calculated. It was found that for slab thicknesses
restricted so that only the dominant mode propagates, the value of q" was
smallest for the minimum slab thickness. A maximum occurred in q" near the o
middle range of slab thickness, with q" gradually decreasing as the thickness ”‘_{
of the slab increases. T

B
.
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PPy
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The predicted slab thickness for YIG falls in the range of thick films L
which can be fabricated, and perhaps it could be deposited on the conductor by
a method similar to liquid phase epitaxy. If single-crystal films are de-
o sired, the film probably would have to be deposited on a nonmagnetic single-
- crystal substrate, such as yttrium gallium garnet, where the crystal cell size »
- matches the magnetic film cell size. In such cases, the analysis of the )
system would have to be altered considerably from the one presented here.

In further analysis, magnetic as well as dielectric losses in the ferrite
slab should be considered. The inclusion of these losses would give the
insertion loss for both the phase shifter and isolation mode of operation.
Further, for an isolator, the degree of isolation could then be estimated much
more realistically.
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APPENDIX A - .1‘

The equation of motion of magnetization, as given by Landau and
Lifshitz, ! is

®
A= yuexHt) - o [Mexean)] (a-1) ~_ff
A
where Y 1s the gyromagnetic ratio and o is the damping constant. The other ff:
constants in the second term on the right in equation (A-1) are added for ’f:?
convenience so that a is dimensionless. In most of the materials that we 4
consider, the damping is small and it is convenient to use Gilbert's "'.,|
approximation.2 That is, in the second term on the right we assume that ’
1
M'xH' =~ -— M' ., (A-2) .
Y - .
The equation (A-1) becomes . 4
R = Y(M'xH') - ST (MOAT) (A-3) .*
The result given in equation (A-3) agrees with the result of equation (A-1), ;
if terms of order a2 and higher are ignored. At the low power levels that we
considered, it is sufficient to linearize equation (A-3) by letting ]
- . e
H' = e, H  + H" o
and R (A-4) L
M' = ezMo + M RTI
with the conditions R
" AR
| || << " S
an -
|Mr| <M. !
o .

In this equation éz is a unit vector along the z-axis. In equation (A-4), we
assume the static magnetic field, Ho, and the static magnetization, M,, to be
in the 2z direction. The assumption of small amplitude signals also leads to
M" and H" having only components transverse to z.

If we use equation (A-4) in equation (A-3) we have

A = Y(ﬁ"xézﬂo * ézMoxH") - ﬁ; (ézMoxﬁ") ' (A-3)

where we assume that |H| = Mo. We assume that all the time-varying quantities

have a harmonic time dependence, e-lwt, and we let

1. Landau and L. Lifshitz, On the Theory of the Dispersion of Magnetic
Permeability Iin Ferromaynetic Bodies, Physik Zeitschrift Sowjetunion, &
. (1935), 153.

T. A. Gilbert, Armour Research Foundation, Rept. No. 1l (January 25, 1955).
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APPENDIX A

M" = MeTiWt

and . (A-6)
H" = He~iWt |

with M and H time independent but still spatially dependent. Using equation

(A-6) in equation (A-5) and expressing the results in Cartesian components

gives

y) - iu)orMy ) 4

~iuM Y(MyHo - M_H

and (A-7)

-luMy

v(MH, - M H) + e, .

To obtain the relation of M to H, it 1is convenient to use the circular

=
polarized quantities, ..w
_—
_ . R
My o= Mok iM) )
Y
and (A-8) e
=
H =H % iH . b
2= oty -9
T4

Substituting equation (A-8) into equation (A-7) we obtain 2;5

FYM H e
M = o) f . (2-9) - -‘A._\
+ yd
o

¢ s
: oo
PUPRT OB

+ w(1 £ ia)

In the cgs system the relationship of B, H, and M is

B =H + 4TM (A-10)
so that we can write
From equations (A-10) and (A-9)
uwo=17% Yy (A=11)
t w(l £ ia) ¥ YHO *

The properties of ferromagnetic materials are characterized by 4nM° and a.
However, the damping parameter o is replaced frequently by the linewidth,
measured at constant frequency as a function of Ho. The parameter o is then
related to the linewidth, AH, by

Y

w ’ (A‘12)
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APPENDIX A ®
where AH is half of the full linewidth at half maximum of the absorption.
Sometimes the full linewidth at half maximum of the absorption is reported;
thus, equation (A-12) must be used with caution. .
o

The circular polarization form of the magnetic permeability 1is
convenient for electromagnetic boundary value problems when the ferrite
material has circular symmetry about the static magnetic field, Ho. However,
for our problem, the permeability tensor relation of B and H 1is more
convenient. This relation 1is usually wWritten as

Bx = uHX + iKHY
and (A-13)
By uHY - lKHx .

From equation (A-11) we find

vv—-f.,—rrr-'y-r
\ .

ol ®,

feamaaBza A Mo Ah. a2 4 s s

and * - (A-14)

A% BN e o an
A
n
~~~
h =S
+
I
=
1
~—
~N
N
.

!

For the case where a is smalii and the static magnetic field is far below
resonance (YH0 << w), we have

ti YHOY(4nMO) . Y(4nMo) -.;i:

- p =21 - > + 1Q e oo

- w B
and ~

Y(4ﬂMo) yﬂoy(4ﬂMO) = ‘q

K 2 = ——— + 2ig ——F5—— . e

w w2 B
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APPENDIX B.~-~THE LOSSES IN A DIELECTRIC SLAB
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APPENDIX B

buring the course of this investigation we consider only lossless
material. The reason for this assumption 1s the difficulty of developing a
general technique for examining the roots of the resulting transcendental
equation which determine the modes of propagation (an example is (13) 1in the
main text).

In this appendix we examine the consequence of assuming that the mag-
netic field is zero and the ounly source of losses is the dielectric. Further,
if we assume the losses are small, the resulting equations for determining the
propagation constant can be solved by a perturbation technique. We assume
that the dielectric constant is given by

€E = €' + ig" (B-1)

and further assume that €" << €', If we let H =0 (u =1, x = 0) in equation
(13) in the main text, we obtain

y; cot (Kayi) = -Y, (B=2)
with
2 2 _
Y{+ Y5 =€ 1
and
o =1+ Yg .

Now if we assume

i i
= v! R -
Yo Y + lYo ' (B=-3)
and
g = ¢g' + io"
with all the imaginary parts small compared to the real parts, then
cot (kayi] = cot (kaY{j - ikayg[l + cot? (kaY{)] (B-4)
and
i(e" - Zyiyi)
Yo iyt = ! . B-
YO iYL = vl o+ > (B-5)
o
Thus the real part of equation (B-2) satisfies
Y{ cot (kayi) = -Yé B (B-6)

so that the real part of Y] satisfies the same equation as equation (B-2)
when Y is replaced by Yy!. The imaginary parts of equations (B-4) and (B-5)

29
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APPENDIX B

satisfy
kavp[1 + cot? (kavf)] = (e" - 2v{vy)/vy o (B-7)
which can be further reduced by using equation (B-6) and
Y{z + Yéz =€' -1
to give
ey o]

e -0 ) (B-8) "

The remainder of the imaginary parts of the quantities of equation (B-3) can : .
be obtained by using the result given in equations (B-8) and (B-2) to give ———

vo = (e"/2 = yivi)/ve

(1 + Y52)1/2

o—l
(B-9)

" d
3Yo/9' . ‘.?

Thus, once the solutions of equation (B-6) are determined, the quantities 3
given in equations (B-8) and (B-9) can be determined. -
-3

and

0"

0.01 for the dominant mode. The region of interest of thickness a in equation

The solution for equation (B-6) has been obtained for €' = 10 and €" = . 4.!
R
(B-6) is easily shown to be R

3 S
——cac< T . (B-10) 3
2k/g" = 1 2k/e" = i

where for smaller thickness than the lower limit no surface wave propagates,
while for larger thickness than the upper 1limit both the dominant mode and
higher modes propagate. The solution for equation (B-6) for £ = 90 GHz, €' =
10, and €" = 0.01 for values of a in the interval is given by equation
(B-10). The results for q" (q" = ko") are shown in figure B-1. Since all the
yield quantities vary as eikoy, —gn gives the decay of the fields in the di-
rection of propagation as e~X0"|Y|. The results show that for thin slabs (a
near the lower limit in eg (B-10)) the attenuation is small. As the slab
thickness increases, the attenuation increases, reaching a maximum, and then
decreases as a approaches the upper limit in equation (B-10). Also shown is
the same calculation with €" = 0.02 and all other quantities unchanged.
During the course of the computation all the imaginary parts in equation (B-3)
were monitored and found to be small compared to the real part of the cor-
responding quantities. Thus the results are valid for the entire range of a
given in equation (B-10).
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